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Abstract. Nonlinear diffusion equations provide useful models for a number of interesting phenomena,
such as diffusion processes in porous media. We study here a family of nonlinear Fokker-Planck equa-
tions endowed both with a power-law nonlinear diffusion term and a drift term with a time dependent
force linear in the spatial variable. We show that these partial differential equations exhibit exact time
dependent particular solutions of the Tsallis maximum entropy (q-MaxEnt) form. These results constitute
generalizations of previous ones recently discussed in the literature [C. Tsallis, D.J. Bukman, Phys. Rev. E
54, R2197 (1996)], concerning q-MaxEnt solutions to nonlinear Fokker-Planck equations with linear, time
independent drift forces. We also show that the present formalism can be used to generate approximate
q-MaxEnt solutions for nonlinear Fokker-Planck equations with time independent drift forces characterized
by a general spatial dependence.

PACS. 66.10.Cb Diffusion and thermal diffusion – 05.20.-y Classical statistical mechanics –
05.60.-k Transport processes – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian
motion

1 Introduction

Research conducted during the last few years on the ther-
mostatistical aspects of anomalous nonlinear diffusion pro-
cesses [1–13] revealed the existence of interesting links be-
tween the phenomenon of nonlinear diffusion, on the one
hand, and Tsallis nonextensive thermostatistical formal-
ism [14,15] on the other one. In particular, it was discov-
ered that Tsallis maximum entropy distributions provide
useful ansaetze for arriving at both exact and approx-
imate solutions of various nonlinear partial differential
equations describing processes involving anomalous dif-
fusion [1,2,8,9]. These Tsallis MaxEnt distributions are
obtained via the extremization, with appropriate con-
straints, of Tsallis nonextensive entropy,

Sq =
1

q − 1

(
1−

∫
ρ(x)q dx

)
, (1)

where x ∈ RN is a dimensionless state-variable, ρ(x)
stands for the probability distribution describing the
system, and the Tsallis parameter q is any real num-
ber. The standard Boltzmann-Gibbs logarithmic entropy
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S = −
∫
ρ(x) ln ρ(x)dx is recovered in the limit q → 1.

The measure Sq is nonextensive. That is, the entropy of
a composite system A⊕B constituted by two subsystems
A and B, which are statistically independent in the sense
that ρ(x,x′)A⊕B = ρ(x)A ρ(x′)B , is not equal to the sum
of the individual entropies associated with each subsys-
tem. Instead, the entropy of the composite system is given
by Tsallis’ q-additive relation,

Sq(A⊕B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (2)

The above equation implies that the value of Tsallis’ pa-
rameter q determines the degree of nonextensivity exhib-
ited by Sq. Many of the physically relevant mathemati-
cal properties of the standard thermostatistics are either
verified by Tsallis’ nonextensive formalism, or can be ap-
propriately generalized [14,15]. In particular, Tsallis’ pro-
posal was shown to be consistent with Jaynes’ information
theory re-formulation of statistical mechanics [16].

The first clue suggesting that the q-MaxEnt principle
may be useful for obtaining exact or approximate solu-
tions of certain important non linear partial differential
equations was given in [8], where the connection between
Tsallis’ formalism and nonlinear diffusion processes was
established. It was there shown that the maximization
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of Tsallis’ entropy subject to appropriate (simple) con-
straints provides exact time dependent solutions for a fam-
ily of nonlinear Fokker-Planck equations characterized by
a diffusion term depending on a power of the probabil-
ity density. These nonlinear Fokker-Planck equations have
been applied in the modelling of several physical phenom-
ena, such as the percolation of gases through porous me-
dia [17], thin liquid films spreading under gravity [18],
surface growth [19], and some processes of self-organized
criticality [20]. In particular, they have been used to
describe systems showing anomalous diffusion of the cor-
related type [6]. Reaction-diffusion equations with non-
linear diffusion have also attracted the attention of re-
searchers [21,22] because they yield useful mathematical
models for a number of interesting phenomena, like diffu-
sion and recombination processes in plasma physics [23],
and the kinetics of phase transitions [24].

In [8] we discussed analytical q-MaxEnt solutions of
a one-dimensional nonlinear Fokker-Planck equation with
a constant diffusion coefficient and a linear homogeneous
drift force. These exact solutions maximize Tsallis entropy
under the constraints imposed by normalization and the
mean values of x and x2, and are of the form

ρ(x, t) = N
[
1 − β (1− q) (x− x0)2

]1/(1−q)
, (3)

where N , β, and x0 are time dependent parameters (see
Sect. 3 for a detailed discussion). Solutions of the form (3)
constitute natural generalizations (in the sense of Tsallis’
q-formalism) of the celebrated Gaussian solutions of a
(linear) Ornstein-Uhlenbeck process [25]. Of course, these
are particular solutions of the (nonlinear) partial differen-
tial equation under consideration. That is, they constitute
only a subset of all the possible solutions. However, they
are important because they are exact analytical solutions.
Nonlinear partial differential equations are very difficult to
solve either analytically or numerically. The knowledge of
exact (particular) analytical solutions is always valuable,
because they may provide some insight on what to expect
with regards to the behavior of more general solutions.
On the other hand, to know exact analytical solutions is
very helpful in order to check the accuracy of numerical
procedures developed to solve the concomitant nonlinear
evolution equation.

A detailed study of this kind of solutions, within a
more general scenario, was given by Tsallis and Bukman
in [1]. Tsallis entropy turned out to be unique, in the
sense of being the only non logarithmic measure providing
Gaussian-like, MaxEnt time dependent solutions for an as-
sociated family of non linear Fokker-Planck equations [12].
A q-MaxEnt scheme generating approximate solutions of
nonlinear Fokker-Planck equations with state dependent
diffusion was developed in [9]. A microscopic (phenomeno-
logical) foundation for the nonlinear Fokker-Planck equa-
tion based upon a non extensive generalization of the
Ito-Langevin dynamics was advanced by Borland [4]. An
interesting discussion of the nonextensive thermostatisti-
cal aspects of nonlinear diffusion in connection with the
second law of thermodynamics has been recently provided
by Frank [5]. Drazer, Wio and Tsallis (DWT) applied the

nonextensive q-formalism to a nonlinear Fokker-Planck
equation with an absorption term, and obtained exact so-
lutions of the q-MaxEnt form [2]. The absorption term in
the DWT equation acts as a (negative) source term that
leads to a non-conservation of the norm of the concomi-
tant solutions. Nonlinear reaction-diffusion equations with
a different kind of source (reaction) term were also shown
to be endowed with Tsallis MaxEnt exact solutions [10].
The equations studied in [10] have a nonlinear diffusion
term together with a (also nonlinear) logistic-like reaction
term. A more general evolution equation with nonlinear
diffusion, linear drift, and a Verhulst-like term was con-
sidered in [11] in connection with Tsallis formalism.

The aim of the present effort is twofold. On the one
hand, we are going to study particular, exact time depen-
dent q-MaxEnt solutions for a nonlinear Fokker-Planck
equation with a time dependent drift force linear in the
spatial variable. On the other hand, we are going to show
that these q-MaxEnt solutions can be used to obtain ap-
proximate q-MaxEnt solutions to nonlinear Fokker-Planck
equations with a time independent drift force exhibiting
a general spatial dependence.

The paper is organized as follows: first of all, a brief
description of the nonlinear Fokker-Planck equation is pro-
vided in Section 2. In Section 3 we study q-MaxEnt exact
solutions for the nonlinear Fokker-Planck equation with
time dependent drift. Related approximate solutions for
the nonlinear Fokker-Planck equation with time indepen-
dent drift forces characterized by a general spatial depen-
dence are considered in Section 4. Finally, some conclu-
sions are drawn in Section 5.

2 The nonlinear Fokker-Planck equation
with a time dependent potential

We are going to study nonlinear Fokker-Planck equations
of the form,

∂ρ

∂t
= D

∂2

∂x2
ρδ − ∂

∂x

[
ρ

(
−∂V
∂x

)]
, (4)

where ρ(x, t) stands for an appropriately normalized prob-
ability distribution. The evolution of ρ is governed by two
terms. On the one hand we have the diffusion term

D
∂2
(
ρδ
)

∂x2
, (5)

which describes the effect of stochastic forces character-
ized by the diffusion coefficient D. The quantities D and
δ are usually required to be positive. However, the less
restrictive condition δ D > 0 still leads to a physically
meaningful evolution. On the other hand we have the drift
term

∂

∂x

[
ρ

(
−∂V
∂x

)]
, (6)
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due to the deterministic (drift) force

K(x) = −∂V
∂x

(7)

arising from the potential function V (x, t). We are going
to consider a time dependent potential function quadratic
in the spatial variable x,

V (x, t) = α(t)
x2

2
+ γ(t)x, (8)

where the coefficients α and γ are known functions of time.

3 Tsallis MaxEnt solutions

The maximum entropy principle provides a powerful
method for obtaining reduced descriptions of the dy-
namics of evolving systems. This approach is based on
the study of the behavior of a small number of relevant
mean values and adopts, for describing the system under
consideration, the probability distribution function that
maximizes the entropy under the constraints imposed by
normalization and the mean values of some relevant quan-
tities. Such MaxEnt ideas, within the standard Shannon-
Jaynes framework, have been applied to a variety of evo-
lution equations (see for instance [26,27] and references
therein). As already mentioned in the Introduction, this
MaxEnt approach to time dependent problems has also
been investigated with regards to more general situations,
where the system under consideration is appropriately de-
scribed by probability distribution functions maximizing
Tsallis’ generalized entropy (see [9] for a detailed account).
In particular, the q-MaxEnt prescription has provided ex-
act (particular) solutions for diverse evolution equations
associated with nonlinear diffusion processes.

Here, we are going to obtain exact time dependent
solutions of the Tsallis MaxEnt form for the nonlinear
Fokker-Planck equation (4) with the time dependent po-
tential (8). Following [1,8,9] we are going to consider the
ansatz

ρ(x, t) = N
[
1 − β (1− q) (x− x0)2

]1/(1−q)
, (9)

where q is Tsallis’ parameter and N , β, and x0 are time
dependent parameters. As we shall presently see (and in
accordance with previous work on q-MaxEnt solutions to
nonlinear diffusion equations [8]) the Tsallis’ parameter q
leading to exact time dependent solutions of the nonlinear
Fokker-Planck equation (4) is related to the exponent δ by

q = 2 − δ. (10)

This means that the appropriate value of Tsallis’ param-
eter q is determined by the evolution equation (4) it-
self. This constitutes an interesting situation: the value
of Tsallis’ parameter is clearly determined by the dynam-
ics of the problem under consideration. Notice that in the

limit q → 1 the q-MaxEnt distribution (9) adopts the
standard Gaussian shape

ρ(x, t) = N exp[− β (x− x0)2]. (11)

This limit case is associated with standard linear diffusion,
which corresponds to δ = 1.

Let us replace the ansatz (9) in the nonlinear Fokker-
Planck equation (4) (with the potential V (x) given by (8)).
Equating now in both members of (4) the coefficients as-
sociated with corresponding powers of x, it is possible
to show that the q-MaxEnt distribution (9) is an exact
solution of the evolution equation (4) provided that the
parameters x0, N , and β, satisfy the system of coupled
ordinary differential equations

d
dt
x0(t) = −α(t)x0(t)− γ(t)

d
dt
N(t) = α(t)N(t)− 2D(2− q)β(t)N (2−q)(t)

d
dt
β(t) = 2α(t)β(t)− 4D(2− q) β2(t)N (1−q)(t). (12)

The equation of motion for x0 does not depend on the
Tsallis parameter q. This equation can be readily solved
by quadratures. Its solution is

x0(t) = µ−1(t)
[
µ(t0) x0(t0)−

∫ t

t0

µ(τ) γ(τ) dτ
]
,

(13)

where

µ(t) = exp
(∫

α(t) dt
)
. (14)

The system of equations (12) implies that

d
dt
β(t) =

2β
N

d
dt
N(t), (15)

which leads to

N(t) = N(t0)
[
β(t)
β(t0)

]1/2

· (16)

By recourse to the above equation and to the third equa-
tion of the system (12) we obtain the following equation
of motion for the variable β,

d
dt
β(t) = 2α(t)β(t) − 2B β(5−q)/2(t), (17)

where the quantity B does not depend on time and is
given, in terms of the initial conditions, by

B = 2D (2− q)
(
N(t0)√
β(t0)

)(1−q)

· (18)

In order to obtain the solution of (17) it is necessary to
consider separately the cases q = 3 and q 6= 3.
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3.1 The case q = 3

In this case equation (17) acquires the simpler form

d
dt
β(t) = 2

[
α(t) +

2Dβ(t0)
N2(t0)

]
β(t), (19)

which can be integrated giving

β(t) = β(t0)
µ2(t)
µ2(t0)

exp
[

4Dβ(t0)
N2(t0)

(t− t0)
]
. (20)

3.2 The case q 6= 3

When q 6= 3 it is convenient to introduce the new variable

Y = β(q−3)/2, (21)

which verifies the differential equation

d
dt
Y (t) + (3− q)α(t)Y (t) = (3− q)B. (22)

The above equation admits the solution

Y (t) = µ(q−3)(t)

×
[
µ(3−q)(t0) Y (t0) + (3− q)B

∫ t

t0

µ(3−q)(τ) dτ
]
,

(23)

leading to

β(t) = µ2(t)

[
µ(3−q)(t0) β(q−3)/2(t0)

+ (3− q)B
∫ t

t0

µ(3−q)(τ)dτ

]2/(q−3)

. (24)

Finally, from the solutions (20) or (24) for β(t), and the
equation (16) relating N to β, it is possible to obtain N(t).

3.3 Example: Time dependent periodic drift force

As an illustration of the Tsallis MaxEnt solutions to the
nonlinear Fokker-Planck equation with a time dependent
potential, let us consider the potential

V (x, t) = α1

(
1 +

cosωt
2

)
x2

2
+ α2 x. (25)

In what follows we are going to assume that q 6= 3. From
equations (14) and (25) it follows that

µ(t) = exp
(
α1t+

α1

2ω
sinωt

)
. (26)

It is possible, after some algebra, to verify that the time
dependence of x0 (see Eq. (13)) associated with the po-
tential (25) is

x0(t) = exp
(
−α1

2ω
sinωt

){
x0(0) exp (−α1t)

+ α2

[
a1

(
exp (−α1t)− 1

)
+ a2

(
ω(cosωt− exp (−α1t))− α1 sinωt

)
+ a3

(
α1(cos 2ωt− exp (−α1t))

+ 2ω sin 2ωt
)]}

, (27)

where

a1 =
1
α1

[
1 +

( α1

4ω

)2
]

a2 =
α1

2ω (α2
1 + ω2)

,

a3 =
α2

1

8ω2 (α2
1 + 4ω2)

· (28)

The differential equation (22) admits the closed analytical
solution

Y (t) = exp
(
−α1

2ω
sinωt

){
Y (0) exp ((3− q)α1t)

+ (3− q)B
[
b1
(

1− exp ((3 − q)α1t)
)

+ b2
(
ω(exp ((3− q)α1t)− cosωt)

− (3− q)α1 sinωt
)

+ b3

(
(3− q)α1(cos 2ωt− exp ((3 − q)α1t))

− 2ω sin 2ωt
)]}

, (29)

with

b1 =
1

(3− q)α1

[
1 +

(3− q)2 α2
1

16ω2

]

b2 =
(3− q)α1

2ω [(3− q)2α2
1 + ω2]

,

b3 =
(3− q)2 α2

1

8ω2 [(3− q)2α2
1 + 4ω2]

, (30)

leading, in turn, to the following closed expression for β,
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β(t) = exp

�
α1

(3− q)ω sinωt

�(
β(q−3)/2(0) exp

�
2α1t

(3− q)

�
+ (3− q)B

h
b1
�

1− exp ((3− q)α1t)
�

+ b2
�

(q − 3)α1 sinωt+ ω(cosωt− exp ((3− q)α1t))
�

+ b3
�

2ω sin 2ωt+ (q − 3)α1(exp ((3− q)α1t)− cos 2ω)
�i)2/(q−3)

· (31)
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Fig. 1. The time evolution of x0 corresponding to the solution
of the nonlinear Fokker-Planck equation for q = 0.5 and diffu-
sion coefficient D = 0.05, when the linear drift is due to the
time-dependent potential V (x) = 0.1[1 + 0.5 cos(2t)]x2 + 0.1 x.
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Fig. 2. The time evolution of β corresponding to the solution
of the nonlinear Fokker-Planck equation for q = 0.5 and diffu-
sion coefficient D = 0.05, when the linear drift is due to the
time-dependent potential V (x) = 0.1[1 + 0.5 cos(2t)]x2 + 0.1 x.

See equation (31) above.

Equations (27) and (31), together with the relation (16),
completely determine the time evolution of the q-MaxEnt
solution (9) of the nonlinear Fokker-Planck equation with
the periodically time dependent potential (25).

Typical examples of the behavior of the parameters x0

and β characterizing the Tsallis solutions associated with
periodically time dependent potentials are depicted in Fig-
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Fig. 3. The time evolution of x0 corresponding to the solution
of the nonlinear Fokker-Planck equation for q = 0.5 and diffu-
sion coefficient D = 0.05, when the linear drift is due to the
time-dependent potential V (x) = 0.1[1 + 0.5 cos(2.34t/3)]x2 +
0.1x.
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Fig. 4. The time evolution of β corresponding to the solution
of the nonlinear Fokker-Planck equation for q = 0.5 and diffu-
sion coefficient D = 0.05, when the linear drift is due to the
time-dependent potential V (x) = 0.1[1 + 0.5 cos(2.34t/3)]x2 +
0.1x.

ures 1–4. Figures 1 and 2 correspond to w = 2.0, and Fig-
ures 3 and 4 to w = 0.78. As was shown in [1,8,9], when
one has time independent potentials the solutions of the
nonlinear Fokker-Planck equation evolve irreversibly to-
wards an equilibrium q-MaxEnt stationary solution. It is
clear that there exist no stationary solutions when time
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dependent potentials are present. In these cases, and af-
ter a transient, the solutions relax towards a periodically
time dependent distribution ρ(x, t) exhibiting the Tsallis’
q-MaxEnt form. These asymptotic periodic distributions
play, for periodic drift forces, a role similar to the one
played by the Tsallis’ q-MaxEnt stationary solutions as-
sociated with time independent potentials.

4 Localized, approximate, MaxEnt solutions
for time independent potentials
with a general space dependence

In this section we are going to show how the exact Tsallis
MaxEnt solutions corresponding to time dependent drift
forces can be used to obtain approximate q-MaxEnt
solutions for nonlinear Fokker-Planck equations of the
form (4), endowed with a drift force arising from a
constant (that is, not depending on time) potential V (x).
This potential can be of quite general shape (dependence
on the space variable x). Our approximation will describe
localized solutions. That is, solutions ρ(x, t) with a
relatively small “width” in x. Let us consider again the
Tsallis ansatz

ρ = N
[
1− β(1− q)(x− x0)2

]1/(1−q)
, (32)

with ρ = 0 whenever the bracket above becomes negative
(Tsallis cut-off condition [15]). Clearly, the distribution ρ
is centered at x0 and its width is determined by the
value of the parameter β. The main assumption of our
approximation will be that the interval where the distri-
bution ρ differs appreciably from zero is small enough for
the potential V (x) to be adequately represented, in that
region, by the second order Taylor expansion

V (x) = V (x0) + V ′(x0)(x− x0) +
V ′′(x0)

2
(x− x0)2.

(33)

Within these conditions, the nonlinear Fokker-Planck
equation can be recast under the guise

∂ρ

∂t
= D

∂2ρ(2−q)

∂x2
+

∂

∂x

[
ρ (V ′(x0) + V ′′(x0)(x− x0))

]
.

(34)

Notice that the potential function appearing in the above
equation is time dependent, for it depends on x0 which,
in general, is a function of time. However, in this case the
time dependence of the (approximate) potential is not
given beforehand. It is determined, in a self-consistent
way, by the center x0 of the evolving distribution ρ(x, t).
The present approach is akin to the celebrated “wave
packet approximation” in quantum mechanics [28].
Replacing now the ansatz (32) in equation (34) it can be
shown, after some algebra, that the former constitutes a

solution of the latter provided that the parameters x0,
N , and β comply with the system of coupled differential
equations

dx0

dt
= −V ′(x0)

dN
dt

= V ′′(x0)N − 2D(2− q)βN (2−q)

dβ
dt

= 2V ′′(x0)β − 4D(2− q)β2 N (1−q). (35)

By a procedure similar to the one discussed in the
previous section it is possible to show that β evolves
according to the differential equation

dβ
dt

= 2V ′′(x0)β − 2B β(5−q)/2, (36)

where B is a constant given by equation (18). As it
was the case for Fokker-Planck equations with a time
dependent drift, it is necessary now to consider separately
the case q = 3. For that value of the Tsallis parameter
the equation for β reduces to

d
dt
β(t) = 2

[
V ′′(x0) +

2Dβ(t0)
N2(t0)

]
β(t). (37)

If q 6= 3, it proves convenient to rewrite the equation for
β in the fashion

dY
dt

+ (3− q)V ′′(x0)Y = (3− q)B, (38)

in terms of the quantity Y defined by the change of vari-
ables

Y = β(q−3)/2; q 6= 3. (39)

It follows from equations (35) (following the same steps
discussed in Sect. 3) that the parameter N can be ob-
tained from β by recourse to equation (16). As a result, the
evolution of ρ is completely determined by equation (38)
and by the first equation of the system (35), that gov-
erns the evolution of x0. This pair of coupled ordinary
differential equations does not have, in general, a closed
analytical solution. As a consequence, a numerical treat-
ment becomes necessary. Nevertheless, instead of dealing
with a partial differential equation we face now the much
easier task of solving a system of two ordinary differential
equations. Furthermore, the functional dependence of the
approximate solution (32) on the spatial variable x is of a
completely analytical nature.

4.1 A numerical example

In order to illustrate the above scheme we are going to
implement it numerically for the quartic potential

V (x) = x2 + x4. (40)
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The behavior of the entropy’s rate of growth provides
a criterion for assessing the accuracy of MaxEnt-related
approximations (see [9] and references therein). The time
derivative of the Tsallis q-entropy (1) corresponding to an
evolving probability distribution ρ(x, t) is given by

dSq
dt

=
q

(1− q)

∫
ρ(q−1) ∂ρ

∂t
dx. (41)

Let ρT(x, t) stand for the approximate distribution given
by the Tsallis ansatz (32) at a given instant t. The time
derivative of the nonextensive entropy Sq at time t is then
given by(

dSq
dt

)
T

=
q

(1− q)

∫
dxρ(q−1)

T

×
{
D
∂2ρT

(2−q)

∂x2
+

∂

∂x

[
ρT (V ′(x0) + V ′′(x0)(x− x0))

]}
·

(42)

Now, suppose that we take the instantaneous distribu-
tion ρ at time t (that is ρT(x, t)) and from that instant
on we let ρ evolve according to its exact equation of mo-
tion (that is, the one involving the exact potential V (x),
instead of its truncated Taylor expansion (33)). Then, the
time derivative of Sq at time t, evaluated under the exact
evolution, would be(

dSq
dt

)
TE

=
q

(1− q)

∫
dxρ(q−1)

T

×
{
D
∂2ρT

(2−q)

∂x2
+

∂

∂x

[
ρT

dV
dx

]}
· (43)

An entropy’s growth criterion for evaluating the quality
of the MaxEnt approximation is obtained by recourse to
the comparison of the two functions (of time)

(
dSq
dt

)
T

(t)

and
(

dSq
dt

)
TE

(t). A specific numerical example is shown

in Figure 5, where the functions
(

dSq
dt

)
T

(t) (dotted line)

and
(

dSq
dt

)
TE

(t) (solid line) are depicted. This figure also
exhibits the time derivative of Sq associated with the trun-
cated potential V = x2 (dash-dotted line). It is clear from
the figure that the local approximation provides a better
description than the one obtained by just assuming that
we are dealing with a quadratic potential.

5 Conclusions

We studied particular exact solutions exhibiting the
Tsallis’ MaxEnt form of a nonlinear Fokker-Planck evolu-
tion equation characterized by a nonlinear power-like dif-
fusion term and a drift term arising from a quadratic po-
tential with time dependent coefficients. We showed that
the dynamics of these q-MaxEnt solutions is governed by
a system of three coupled nonlinear, ordinary differen-
tial equations (that is, Eqs. (12)), that can be solved by

0
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0 0.1 0.2 0.3 0.4 0.5

dS
q/

dt

t

Fig. 5. The time-derivative of the Tsallis’ generalized entropy
for the case of a time-independent drift given by the potential
energy V (x) = x2+x4, for q = 0.5 and D = 0.1 (solid line). The
dotted curve corresponds to the second order approximation
for V (x) in powers of (x − x0) , while the dash-dotted curve
has been obtained for the truncated potential V (x) = x2. The
initial values are x0(t0) = 2 and β(t0) = 3000.

quadratures. As an illustration of these results we pro-
vided a detailed discussion of the particular case associ-
ated with a periodic potential.

We also applied the above developments to a scheme
for obtaining approximate, localized, q-MaxEnt solutions
for nonlinear Fokker-Planck equations with drift forces not
depending on time, but characterized by a general spatial
dependence. The evolution of the concomitant q-MaxEnt
solutions is determined by three coupled ordinary differ-
ential equations that do not admit, in general, exact ana-
lytical solutions. We studied numerically the behavior of
this system in a particular example.

The results reported here provide new evidence on the
usefulness of the generalized statistical formalism (based
on Tsallis’ nonextensive entropic measure) as a tool for
the study of nonlinear, power-law diffusion processes.
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